Особенности горения жидкого топлива и основы его расчета




Известно, что при низких температурах наличие топлива и воздуха (окислителя) не обеспечивает их химического соединения, называемого горением. Горение начинается только после того, как частицы прогрелись до температуры, обеспечивающей им энергию активации Е, достаточную для вступления в реакцию.

Горение — это химический процесс окисления горючих компонентов топлива, сопровождающийся интенсивным выделением теплоты.

Предварительный подогрев, необходимый для зажигания топлива, первоначально создается внесением в топку горящего факела, искры или другого источника высокой температуры. В дальнейшем частицы горящего топлива, горячие газы, а также накаленные теплоизлучающие стенки топочной камеры способствуют подогреву и протеканию реакции горения вновь поступающей топливно-воздушной смеси.

График на  82 иллюстрирует энергию реакции и активации. Частицы топлива и окислителя, обладающие начальным энергетическим уровнем Н, должны приобрести энергию активации. Для достижения энергетического уровня А, при котором реакция будет идти самопроизвольно, необходимо предварительно преодолеть энергетический барьер, равный разности энергетических уровней А и Н, после чего начинается экзотермическая реакция, идущая до точки К и сопровождающаяся выделением энергии (теплоты) в количестве ЕА_К.

В результате расщепления образуются легкие и тяжелые углеводороды. Легкие углеводороды и водород быстро сгорают при благоприятных условиях (достаточная температура, наличие кислорода). Тяжелые, высокомолекулярные углеводороды и сажистый углерод очень трудно сгорают, вследствие чего значительная несгоревшая их часть уносится из топки либо образует в топках коксовые наросты. Копоть и сажа в пламени также являются результатом образования тяжелых, высокомолекулярных углеводородов.

При нагреве жидкого топлива с недостатком воздуха происходит испарение углеводородов и их термическое разложение, сопровождающееся расщеплением углеводородов.

В результате облегчается конечная стадия горения, проходящего по реакциям:

При достаточном количестве кислорода углеводороды окисляются. Начальная стадия окисления проходит с образованием горячих газов — оксидов углерода и водорода 2СХ

Таким образом, процесс горения жидкого топлива проходит следующие стадии: смешение капель топлива с воздухом, подогрев их и испарение, термическое разложение (расщепление), образование газовой фазы, воспламенение и завершение оксидирования (горения) газовой фазы. Стадии эти неотделимы одна от другой и в какой-то, мере совмещаются.

2CO +

Если процесс нагрева и испарения частиц топлива протекает быстро, то при достаточном количестве кислорода создаются наиболее благоприятные условия для полного горения, в противном случае происходит глубокий распад углеводородов с образованием трудносжигаемых частиц. Мелкое распыление частиц топлива и равномерное их распределение увеличивают активную 'поверхность реакции, облегчают нагрев и испарение частиц и способствуют процессу быстрого и полного горения.

Образовавшаяся после прохождения первых стадий горения газовая смесь легко воспламеняется и быстро сгорает.

Таким образом, основные условия эффективного сжигания

Разложение углеводородов идет симметрично при сравнительно низких температурах (до 600 °С). При более же высоких температурах распад молекул идет несимметрично: наряду с легкими углеводородами образуются тяжелые углеводородные комплексы, наиболее трудносжигаемые. При условии тонкого, равномерного распыления топлива и хорошего смешения его с воздухом, по возможности подогретым, подводе всего воздуха к корню факела создаются наилучшие условия горения жидкого топлива. Важно также, чтобы образование частиц тяжелых углеводородов и сажистого углерода, неизбежное в той или иной степени, происходило возможно раньше, чтобы частицы не уносились в атмосферу, а успевали полностью сгорать в зоне интенсивного горения.

чить подвод всего количества воздуха к устью факела, мелкое и

жидкого топлива сводятся к следующему: необходимо обеспе

топлива и воздуха, турбулентность потока, подогрев воздуха, вы

равномерное распыление топлива, тщательное смешение частиц

ке.

сокую температуру и хорошую воспламеняемость топлива в топ

горения топлива (стехиометрическая смесь), может обеспечить

Подвод воздуха в количествах, теоретически необходимых для

ления и тщательного смешения с воздухом. Поэтому практиче

полное сгорание топлива лишь в случае очень тонкого его распы

необходимо для создания стехиометрической смеси. Однако во

ски воздух подают в количестве, несколько большем, чем это

должен быть слишком большим. При двойном количестве возду

избежание чрезмерного охлаждения смеси избыток воздуха не

п даже становится невозможным.

ха воспламенение и горение топлива чрезвычайно затрудняется

При достаточной температуре смесь паров топлива и кислорода воздуха начинает активно реагировать, происходит процесс диффузионного сгорания газовой фазы топлива. Скорость химической реакции очень велика, скорость же физических процессов (испарение капли, смешение паров топлива с окислителем, подогрев смеси) значительно меньше, и очевидно эти физические процессы определяют скорость сгорания.

Сгорание отдельной капли топлива можно представить следующим образом: в результате подогрева капля начинает испаряться, пары топлива, окружающие каплю, диффундируют в окружающую среду, происходит взаимопроникание частиц воздуха и топлива. Капля, движущаяся относительно окружающей среды, будет иметь в передней части и сбоку более тонкую, а сзади — удлиненную зону горения.

Горение жидкого топлива состоит из процессов его распыления, смешения с воздухом (окислителем), испарения и реакции соединения с окислителем.

В основном время сгорания зависит от времени испарения и времени диффузии молекул. Ламинарная диффузия определяет спокойный, сравнительно медленный процесс, турбулентная — ускоренный процесс. С уменьшением размера капель уменьшается время их испарения. Испаряемость топлива, его плотность, состав и условия теплообмена с окружающей средой также влияют на скорость горения.

Распыление топлива — процесс дробления струи на мелкие капли. Для распыления струи жидкого топлива необходимо преодолеть силы сцепления   и поверхностного   натяжения.

Величина поверхности частиц топлива, омываемых воздухом и вступающих в реакцию с кислородом, имеет решающее значение для интенсивного и полного сгорания топлива. Величина активно реагирующей поверхности топлива определяется степенью и качеством его распыления, а также качеством смешения его с воздухом. Однородное и тонкое распыление топлива является обязательным и важным фактором подготовки топлива к сжиганию,

Наиболее совершенное распыление достигается сжатым воздухом или паром, однако для этого требуется компрессор или паровой котел. При распылении топлива дутьевым воздухом также получается хорошее качество распыления, однако здесь необходим вентилятор высокого или среднего давления (не менее 3000—4000 Па). Недостатком метода распыления с помощью форсунок является наличие вращающихся механизмов с довольно сложной кинематической передачей в механических форсунках, а в ротационных — еще требуется топливный насос высокого давления, а также система фильтрации топлива.

Для создания развитой поверхности топливных струй применяются следующие методы: распыление топлива сжатым воздухом, паром или дутьевым воздухом от вентилятора; распыление топливной струи за счет действия центробежных сил в механических форсунках; создание тонкой конусовидной пленки вращающимся распылителем в ротационных форсунках; газификация топлива; распределение топлива тонкой пленкой на поверхностях корпуса горелки.

Для того чтобы обеспечить эффективное протекание процесса горения жидкого топлива, необходимо правильно проводить его теоретический расчет.

Все перечисленные способы распыления топлива применяются при расходах топлива не ниже 5—10 кг/ч, что существенно превышает потребность в топливе бытовых печей. По этим причинам для установки в бытовых отопительных и отопительно-варочных печах могут быть рекомендованы только методы газификации и распределения топлива тонкой пленкой в корпусе горелки. При этом требуется минимальное количество вспомогательного оборудования, причем расход топлива может быть минимальным.

Точный расчет этих величин производится по данным элементарного состава топлива на основе количественных соотношений реакций горения. Для различных марок жидкого топлива, имеющего достаточно стабильный элементарный состав, выведены упрощенные формулы для расчета процессов горения в следующем виде.

При расчетах горения топлива требуется определять следующие величины: количество воздуха, теоретически необходимого для горения; количество образующихся продуктов сгорания; коэффициент избытка воздуха в продуктах сгорания; теоретическую температуру горения.

Определение величины коэффициента избытка воздуха может быть произведено по данным элементарного анализа продуктов сгорания по углекислоте и кислороду.

Зависимость теплоемкости и объемов газов от величины избытка воздуха показана на  83. Величины сг и св можно определить по графику на  83, а.

Согласно выведенным зависимостям, основные характеристики продуктов сгорания жидкого топлива определяются величиной а. На  83, б показаны зависимости объемов воздуха, необходимого для горения продуктов сгорания и температуры сгорания от величины и.



Рекомендуем бригаду по демонтажу и вывозу строительного мусора.
Для облагораживания территории рекомендуем - trimmer.su - электрические и бензиновые триммеры.

Правила пользования индивидуальными и малыми сельскими банями ипарильнями Особенности горения жидкого топлива и основы его расчета Типы горелок для жидкого топлива Противопожарные мероприятия и безопасность труда Водонагреватели и водогрейные устройства. конструкции водонагревателейзаводского изготовления Устройство фундаментов и оснований, кладка и наружная отделка печей Контактные водонагреватели для теплоснабжения и горячего водоснабжениябань Антрацит кокс уголь. особенности процессов сгорания твердого, жидкого игазообразного топлива. камины Перевод на газ отопительных печей малых и средних габаритов Основные свойства жидкого топлива. печи на жидком топливе Конструкции водогрейных устройств, применяемых в топливникахотопительных и отопительно-варочных пече
Сайт создан в системе uCoz